If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+30y-24=0
a = 6; b = 30; c = -24;
Δ = b2-4ac
Δ = 302-4·6·(-24)
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{41}}{2*6}=\frac{-30-6\sqrt{41}}{12} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{41}}{2*6}=\frac{-30+6\sqrt{41}}{12} $
| 5x-3+4x+2=3(3x+3)-8 | | 4x+(-32)=40 | | 6g÷2=36 | | -1/6(24x-60)+2=36 | | 3(2x-4)=2=3x-5+3x-5 | | -4=1/2*x+3 | | 2x=3x-12=8 | | 11h–10h=15 | | 4–(h+15)=8 | | 3x+-2x+6=-4 | | (8n^2+2n-5)(4n+3)=0 | | 3(5x+7)=16 | | 8n-(4n+7=25 | | F=9/5c+32(c) | | (3x-1)/(x-3)=0 | | -6x-x-1=48 | | 3x+-2x+-4=6 | | -6.4w=3.4 | | 4=1/2x+3 | | 3x20=8 | | 12x2+17x+6=12, | | 3x+-4=-6-2× | | 3×-3=x-9 | | 3x-4(2-x)=3x-12 | | 4x-12+x-3=5(x-3) | | -(5n-3)-2=-2-4(n-2) | | 14n–8n=12 | | 2x=98x | | 4y=2(5+y)-10 | | 3y+5/36=4/5 | | 2x-(1/3x)=-6 | | 3(4x+3)=2(3x-6) |